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Dynamics of two granules
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We study the dynamics of two particles that interact only when in contact. In this sense, although not in
every particular, the interactions mimic those in granular materials. The detailed solution of the dynamics
allows an analysis of the backscattering behavior of the first particle and of the energy dissipation in the system
as a function of various parameters.
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I. INTRODUCTION teracting oscillatorgsuch as the Fermi-Pasta-Ulam chain
extensively studied in recent yedrs3,14].

Signal propagation in granular materials is a long- Two decades ago Nesterenkd] showed that under ap-
standing subject of intereft—5], and has recently attracted propriate assumptions, among them the slow spatial variation
considerable attention in a number of novel contexts. One isf the displacements;, the equations of motion for the
the observation that the attenuation characteristics of signatgranular particles could be approximated by a continuous
(impactg in such materials might make them good candi-nonlinear partial differential equation that admits a soliton
dates for shock absorptiof6]. Another is the use of the solution for a propagating perturbation in the chain. More
backscattered signal for the nondestructive identification ofecently, it was shown that strictly speaking these solutions
buried objectg5,7-10. are solitary waves rather than solitgii$,14. It is also un-

Interactions in granular materials are notoriously com-derstood that a potential exponent 2 is required to accom-
plex, but a number of relatively simple models have beemmodate solitary waves, i.e., a “hard nonlinearity” is required
implemented in the context of signal propagation, model§6]. Nesterenko coined the words “sonic vacuum” to stress
that it is hoped capture the principal ingredients of the truehe importance of the absence of “harmonic terme’=2)
interactions at least in some regimes. A model potential usefh this analysis because such teraad only such termsare
for a monodisperse chain of particles that repel upon overlagssociated with ordinary sound propagation. Indeedn as
according to the Hertz law is given 1] —2 the width of the solitary wave diverges. More recently,
numerical simulations ofliscrete chains have provided a
great deal of additional information about the important role
of discreteness as well as nonlinearity in the signal propaga-
tion properties.

a
V(5i,i+1)zﬁ Nie1  0=0,

V(8 ;+1)=0, 6>0. (1) Thus, while the continuum solitary wave solutions pro-
vide enormously helpful analytic insights, the importance of
Here, for spheres, discreteness in the propagation properties of such chains
should not be underestimated. Neither should the fact that
8,i+1=2R=[(Z 11t X+ 1)~ (Z+X)], (2 even with a “harmonic” exponema=2, the chain is decid-

12 5 edly d?fferent frpm a harmonic sy;tebecause thgre is no
A 2 (_) D(Y.0)= 3[(1-0 )) 3 attractive restoring forceThe resulting nonanalyticity of the
5D(Y,o)\2) ' 2 Y ' potential leads to profoundly different properties than those
observed in an ordinary harmonic chain. Indeed, although
Y and o denote Young's modulus and Poisson’s ratio, re-solitary waves are no longer exact solutigasd there is no
spectively,z; denotes the initial equilibrium position of grain longer a perfect sonic vacuymthere are extremely long
i in the chain, andg; is the displacement of grainfrom this  lived quasisolitary waves that broaden slowlyhereas a
equilibrium position. The geometric parametris the ra- harmonic chain would exhibit rapid dispersion of energy
dius if the particles are spheres. More generdflys deter-  [14].
mined by the principal radii of curvature of the surface at the We offer the above observations in support of the useful-
point of contact, and the specific expressions in Egsand  ness of a study of a chain with only repulsive forces even
(3) must be modified according[{L2]. The exponenhis 5/2  with the choicen=2. A number of helpful insights can be
for spheres, it is 2 for cylinders, and, in general, depends oachieved from such a study if one is able to obtain analytic
geometry. results, and this is possible with=2. In this paper, we carry
Two features of the potential are decisive for the resultingout such an analysis for the simpldand yet extremely in-
propagation properties of the chain: one is the expoment teresting such system, namely, one consisting of only two
and the other is the absence of an attractive portion in thenasses. Surprisingly, this simple scenario seems not to have
potential. It is in this latter respect that the granular chainbeen analyzed in detail in the literature, although the dynam-
differs profoundly from the many models of nonlinearly in- ics of pairwise collisions is an important inpiand phenom-
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enological assumptions are made aboutintthe study of Il. TWO PARTICLES WITH KINETIC FRICTION
longer chaing5]. A two-mass system, being explicitly inte-

grable, can yield valuable information. In view of some of bo
the current applications of energy propagation in granuIaEion coefficientu. Kinetic friction arises from contact forces

materials, we are particularly interested Wackscattering \yhen a solid body moves along a solid surface, and depends
andenergy dissipatiomn the presence of friction, and in the o, the velocity only in that its direction is always opposed to
effects of frictional disorder on these quantities. The resultgpe velocity. Two cases are presented analytic@tyleast in
of our analysis promise to provide helpful phenomenologicabart)_ They turn out to exhibit rather different behaviors,
input into the propagation of excitation pulses in longeryhich we anticipate here as a point of reference. In one, only
chains as long as the pulses remain narrow. For exampléne second granule is subject to friction. We find that for a
recent experiments on impulse dispersion in tapered chaiNgtain range of friction coefficient values, there is both
indicate the significant role of friction in the propagation andprgpagation and backscattering, that the velocities of the for-
dispersion procesfl7]. We find that a two-mass system \yard moving second granule and the backward moving first
leads to some unanticipated nonmonotogtbeit, in hind-  granule are monotonic functions of the friction, but that the
sight understandabldehaviors as one varies system param+ota| energy dissipation during the collision is nonmonotonic.
eters. To support the relevance of our results to the sphericg the second model, only the first granule is subject to fric-
granular problem, we also present some numerical results fqon, Here we again find a range of values of the friction
the Hertz potential witm=5/2, and show the similarity in  coefficient for which there is both propagation and back-
the behavior of this system and that of the 2 case. scattering. Now, however, the granule velocities are non-
We consider two finite-sized particleSgranules” of  monotonic functions of the friction while the energy loss is a
equal massn. The specific value of the mass does not matteimonotonic function. Results for the more general case of
since it can be scaled out by redefining variables; the onlyoth granules subject t@ossibly different friction are pre-
important point is that the masses are equal. When the graRented numerically. In this way, we cover the entire range of
ules “do not touch,” each moves independently of the otherrictional disorder,” as might occur if the granules are made
(i.e., their potential of interaction is zero beyond a certaingf gifferent materials. While most of our discussion revolves
distance between their center§Vhen theydo “push one  around the case=2, some results fon=5/2 are presented.
into the other,” there is a repulsive linear force between theirp|sg as a backdrop we keep in mind the most extreme case
centers with force constark the force vanishes once the 4f 5 hard interaction, a hard sphere-¢«). The interaction
particles separate again. One or both of the granules are su-instantaneous in this case and leads to elastic collisions in
ject to friction, which may be kineti@.e., constant, see Sec. \ynich energy and momentum are conserved. The first gran-
I) or hydrodynamid(i.e., proportional to velocity, see Sec. yle stops and the second granule moves forward. This com-
IIT). In order to initiate energy transfer between the granuleSyent emphasizes the observation that only collisions of finite
one can, for example, introduce some precompression in th§ration can lead to a combination of backscattering and
system, or one can impart one of the granules an initial Vepropagation in two granules.
locity toward the other. We do the latter: initially the granules’  \\e rescale variablesee the Appendixso that we can set
are assumed to be just touching, the first granule has initighe coefficienta=1 in Eq. (1) regardless of the value of

velocity v, toward the second, and the second is at rest. Werhjs rescaling allows presentation of results in terms of a
are interested in the velocity of the two granules and the totadjngle parameter, the scaled friction.

energy in the systenmmediately after the collisionNote
that in the absence of friction, the collision is elastic so that
the energy and momentum are conserved. In this case, the
first granule simply ends up at rest and the second with ve- Consider first the case of a frictionless first granule. The
locity vy, i.e., there is no backscattering. Of course, there isnovement of the second granule will then only start if the
backscattering, even in the absence of friction, in a longeelastic compression exceeds the frictional forc®,*> 7,
chain. and so at first only the first granule moves and its motion is

Even these simple systems present a broad range of ougoverned by the equation of motion
comes, some more interesting than others, and not all of 3
which will be covered in detail. For example, one or the X1 (t)=—[x(t)]" L. (4
other or both granules may stop moving altogether before the
collision is over. However, we are particularly interested inThe initial condition for this problem isx;(0)=0 and
situations where the second granule is still moving forward,(0)=1. The solution fom=2 is easily found to be
after the collision(propagatiomn and the first granule is mov-
ing backward(backscattering Our analysis will focus on X1(t)=sin(t), (5)
these outcomes and the conditions that lead to them.

In Sec. Il, we present and solve the two-particle modeland is valid until the time, at whichx,(ty) = 7, that is, until
with kinetic friction. Section Il presents a similar calculation ty=arcsin).
for the model with hydrodynamic friction. A summary of At time ty the second granule starts moving as well, and
results, and a brief outlook of future work, are gathered inthe system is now governed by the two coupled equations of
Sec. IV. motion

In this section, we examine granule collision when one or
th of the granules are subject to kinetic friction with fric-

A. Frictionless first granule

021303-2



DYNAMICS OF TWO GRANULES PHYSICAL REVIEW E68, 021303 (2003

0.0

X1 (1) = =[x (t") = xo(t")], (63)
Xalt') = = 7= Dxo(t) = xa(t))], (6 ]
with the initial conditions: x,(t'=0)=17, x;(t'=0) L AN
= \1— 7%, andx,(t'=0)=x,(t'=0)=0. Here we have de- _ RN
finedt’ =t—t,. The solution is found to be A RN 7
1 [ N
Xy(t')= Z[ = n(=3+t'%)+2(1= 7)) V%' + ycog 2t) _
+12(1— 7?)Y2sin(\2t")], (7a) i RN
1 %0 ' 0{2 ' 0!4 ' 0!6
Xo(t')= = [ (= 1+t'%)=2(1= 7)) V%' + ycog 2t) L
FIG. 1. Velocity of the first(frictionlesg granule at the end of
+2(1- 7H)Y2sin(y2t")]. (7b)  the collision as a function of friction. Solid curve:=2.5 (Hertz

potential for sphergsDashed curven=2.
If # is too large, the second granule will stop before the
two granules lose contact. For sufficiently smallthis does In Fig. 2, we show the ratio of the total kinetic energy of
not happen and the above solutions then remain valid untiihe system at the end of the collision to the initial energy,
contact is lost. The timé&' =t; when this occurs is the time © 2112 )
at which Ax(t;)=x,(t;) —x,(t;) vanishes, that is, wheny E —1- n(1— 57" (77 )772 9)

=m/\2. The velocities of the granules at the moment of E_o_ \/5
separatiort=ty+t; are

71

In the rescaled variable§,=1/2. Curiously, there is a re-
n gion where this ratiancreaseswith increasing friction coef-
v(13)=——, (8a) ficient. The reason for this behavior is that when friction
2y2 increases beyond a certain pojbeyond the minimum in the
curve, relatively more energy is transferred to the first gran-
0= (1- 2)1/2_£ 8b) ule (as opposed to being simply dissipateg the end of the
2 7 22" collision. Again we also show the numerical results obtained
for the Hertz potential witm=5/2 (solid curve and com-
The values ofy for which this description is valid are those ment on the similarity with th@=2 curve.
for which v$>0, that is, for O<y<(1+=2/8) 12
=0.68 ... .Beyond timet=ty+t,; each granule continues B. Frictionless second granule

on its course, the first forever and the second until friction Next we consider the case of a frictionless second gran-
brings it to rest. Backscattering and propagation thus occuile. The first granule now moves forward, eventually stops,

when 7<0.6@ ... . As afunction of 7 in this range, the and perhaps moves backward, while the second granule
magnitude of the backward velocity increases monotonicallynoves forward.

while that of the forward velocity decreases monotonically.

1.0

The backscattering is shown in Fig. 1, which we exhibit in
order to stress the similarity in the behavior of the2 ol ]
potential and that of the Hertz potential for spheres.ms AN |
increases the range of for which bothv{® and v are sl \ i
nonzero shrinks, until it shrinks away completely when L % .
— 0, 07— \\\ —
Perhaps the most dramatic outcome of this calculation iS@E — 0 1
the fact thatthe friction on the second granule causes the F os- X .
first granule to move backwargecall that if both granules i \\ 7
are frictionless the first one simply stopk other words, the 051 S //' 7
friction on the second granule is responsible for backscatter- I \‘\\_ . 1
ing. This behavior, strange at first glance, occurs becauseth 777" 7]
first granule “stops too soon,” that is, it stops before the pair . | . | . | |
has had time to decompress completely. Indeed, if the fric- b0 02 04 0.
tion on the second granule is so strong that it does not move n
at all, the first will move backward with velocity; = —1. FIG. 2. Ratio of the total energy at the moment of separation to
Our model lies between the limiting cases of zero and veryhe initial energy as a function of friction. Solid curva=2.5
large n (— 1$v(15)<0). (Hertz potential for sphergsDashed curven=2.
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25 - ' ' ' very good for a rather large range gf Therefore, we pro-
ceed using this approximation. In the figure we also show the
time that it would take the collision to be over if solutions
(118 and (11b) would remain valid, i.e., the solutiot}, of
| the equatiorxy(t() =x,(ty). This time, shown as a dashed
line, is always above the time at which the first granule stops,
indicating that the first granuleecessarilystops before the
collision is over. This persists even for large as »— o the
stopping time of the first granule goes to zero ag, Mhile
the time for the collision to be over if the above solutions
would remain valid goes to zero asz2/

When the first granule stops, the equations of motion are
no longer Eqs(10a and(10b). The initial conditions for the

-tV new set of equations are the velocities and positions found
1 above at timet=t,. Within the smally approximation, we
use

FIG. 3. Comparison of the smaf}-analytical solution(dotted
and the numerical solutior(solid) of the stopping condition 1
v1(tp)=0. The dashed line is the time it would take the granules to Xq(tg) = —[2\/577— (77-24- 4) 7], (144
separate if solution&l1g and(11b) remained valid until then. The 8
fact that it lies above the other curves indicates that the first granule 1
stops before the collision is over. Xy(to) = 5[2\/577_4(23,4)\/77—77_(772_4) 71, (14b)

As before, the granules are initially just touching, the first
granule having an initial velocity,=1. While the first gran- v1(te)=0, (140
ule is moving forward, the system is governed by the follow-
ing equations: 1
) valto) = 5[2— 2w 7], (14d)
X1(t)= = 7= [x1(t) =x(1) ], (10a

g as the initial conditions.

X2(1) = = [X2() = X1 (V)]. (10b) The equations of motion at this point depend on whether
Explicit integration yields the first granule simply remgins statiopary or starts moving
backward. The latter occurs if the elastic force is greater than

1 the friction, that is, if
Xa(t) = 7[ = m+2t= pt*+ pcog V2t + V2 siny21)],

1
(lla [Xl(tO)_Xz(to)]z z[— n— 7700121/4\/%)
Xo(t) = %[ 7+ 2t— yt?— ycog \2t) — 2 sin/21)]. 2 sin2Y pm) >y (15)
(11b

Therefore, for » smaller than a critical value 7
These equations hold as long as veloaja(t)=>'(1(t)>0. =043... ),_ thefirst granu_le will s_,tart moving backwgrd,
This velocity is given by and_we confine our analys_ls to this case. The equations of

motion then argnote that since the first granule is moving
backward, the friction is also reverged

v1<t>=%[2—2nt+2cosﬁt>—ﬁnsin(ﬁt)]. )
(12 X1(t) ==Xy (t") =X(t")], (169

The timet, at whichv(tg) =0 car_mot be found explic;itly in ()= —[Xa(t)) = x4 (t)], (16b)
general, but the problem may still be treated analytically for

small or for larges, or numerically for an arbitrary;. wheret’=t—t,. The initial conditions are those given in
If »<1, we can expand(t) aroundt= /2 (the solu- Egs. (149—(140d.

tion for »=0). We find that The solutions of this set as a seriessjncan easily be
U2 exhibited explicitly but are not very instructive. Two cases

t _m | +0(7%?) (13) must be distinguishedd) The first granule is still moving

0 V2 J2 K backward when the collision ends; af®) The first granule

stops before the collision ends, at which point the equation of
In Fig. 3, we compare this analytical approximation with themotion (163 no longer holds. In either case, from the series
numerical solution. The smal- approximation is clearly solutions, one can calculate the tifie=t, at which the col-
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0.8

a certain value £0.22), the first granule is at rest when the
collision ends and there is no backscattering. Therefore, the
backscattering in this model happens becausditsiegran-

ule (as opposed to the second granule in the previous ex-
ample stops “too soon”(i.e., before the collision is ovgr

but not “too late” (i.e., when the compression is still strong
enough to overcome frictionThe required balance leads to
7] the nonmonotonic behavior seen in Fig. 5. Even though the
backscattering is smalle.g., compared to that in the first
mode), it is conceptually striking. However, the total energy
. of the system at the end of the collision is a monotonically
decreasing function of;, in contrast to the behavior in the
previous case shown in Fig. 2.

0.6

=04

02

L | L | L | L |
% 0.1 02 03 04 C. Granules with arbitrary friction

n

. . . While the results presented above deal with the extremes
FIG. 4. Comparison of the time required for the two granules toof frictional disorder, it is helpful to present a broad brush of
separate calcglated nu_menca(solld_) and analytically for small_q graphical results for arbitrary combinationsf and 7,, the
(dotted. T_he time requwed for the flrs't granule to stop according tofyiction parameters for the two granules. This is also an op-
the equations of motiofi.68 and(16b) is shown as a dashed curve. 1 nity for reassertion that these broad brush results are
Therefore, ify=<0.22, the first granule is still moving backwards at essentially the same for the=2 and then="5/2 Hertz po-
the end of the collision. tentials for two granules. Since the graphical results are nec-
essarily numerical, we present them for the 5/2 potential.

lision ends as the solution of the equatiof{t”) =x,(t"). If They are qualitatively indistinguishable from those for

we assume that the first granule is still moving, we find

=2.
112 In Fig. 6, we show in gray scale the magnitudesz)éﬁ’
o . .
tlz(_’7> — p+0(7%?). (17) (first pane), v(zs) (s_e_conq pangland energy rati€®/E, at_
J2 the end of the collision in thex; , 7,) regime where there is

simultaneous backscattering and propagation. Darker shad-

This solution is shown as the dotted curve in Fig. 4, as is théng represents a higher speéist and second pangland a
numerically obtained exact solutigrolid line). Approxima-  higher energy(third panel. Figure 1 is associated with an
tion (17) begins to seriously deviate from the exact solutionupward trajectory in the first panel g4 =0. The monotoni-
at aroundn~0.1. The dashed curve indicates the time atcally increasing backscattering seen in Fig. 1 corresponds to
which the first granule stops before the end of the collision ifthe upward darkening. Figure 2 is associated with the same
Eq. (163 remains valid until it does. This analysis is there- upward trajectory, now in the rightmost panel. The non-
fore appropriate and leads to backscatterfagd propaga- monotonicity is seen in the lightening followed by darken-
tion) if #=0.22. ing. The nonmonotonicity of Fig. 5 is associated with the

In Fig. 5, we see that ag increases, the final backward shading in the first panel associated with the horizontal tra
velocity of the first granule is nonmonotonic, that is, it in- jectory alongz,=0, captured in the curvature of the isove-
creases from zero te=3% of the initial velocity, and then locity lines. The monotonicty oﬁ‘ﬁ discussed in the;,0)
decreases again. In this model, we thus observe that thereasid (07,) cases is evident in the middle panel.
backscattering for smaly. For =0 and for» greater than This rather complex behavior arises from the interplay of
energy dissipation and energy transfer during a collision.
Thus, for example, increasing friction on the first granule
causes it to stop sooner. If it stops too sgtimgh 7," ), the
spring is not sufficiently compressed to overcome friction
. and it may happen that the whole process simply stops then
and either one or the other or both granules do not move. On
the other hand, if it stops too latélow 7,"), then the en-
- ergy transfer to the second granule may cause it to move
forward, but there may not be sufficient energy to cause
backscattering. Or backscattering may occur but not forward
i motion. Between these situatioffSntermediate %," ), both
granules may be in motion at the end of the collision.

0

-0.01

)

@
=~ = -0.02
d

-0.03

0.04 s | s | s | . | . Ill. TWO PARTICLES WITH HYDRODYNAMIC FRICTION

When dissipation is of hydrodynamic origin, the dissipa-
FIG. 5. Final velocity of the first granule. tive force — yx is proportional to the particle velocity. Hy-
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drodynamic friction arises from the motion of a body against
a lubricated surface or in a liquid or gaseous medium. We
find that the cases of equal and slightly unequal friction co-
efficients can be solved analytically and cover essentially the
whole spectrum of possible behaviors.

The scaled equations of motigsee the Appendjxfor the
potential withn=2 are

X1(1) == y2X1 — [ X1 (1) = X(1)], (183

Xa(t) = — yaXo = [X2(t) =X (1) ]. (18b)
Even though these equations can be integrated exactly, the
time required for the two granules to separate can, in general,
only be calculated numerically. Here we consider the case
v1~ 72, for which we can find an approximate analytic ex-
pression for this time. Thus, we set=y(1+ §;) with &§;
=— §,= 6 and solve the problem for smdl|.

Defining X+ =Xx;*X,, we can obtain from Eqg18) the
associated Laplace transforis (s):

SysX_(s)+(ys+s?)X (s)=1, (193
(2+ ys+5%)X_(S)+ dysX,(s)=1. (19b)
The solution of these equations to first ordersitis
X, (8)= — oy 20
‘975 rs  srezrsyre] 2
oy
X_(s)= (20b)

2+s(y+s) (y+s)[2+s(y+s)]’

The time functionx..(t) are the inverse Laplace transforms
of X.(s). Furthermore, the timé, at which the granules
separate can be calculated by solving the equatioft
=t,) =0. To zeroth order irs (that is, for§=0), we have

X_(to) P L LY (21)

w

where w=+/8—7%/2. If ¥*=8, the collision never ends. If
y?<8, then it ends at timé,= 7/ w. To calculate the sepa-
ration time to first order in5, we writet;=t,+ €/ w, expand
X_(t1) =0 to first order ine, and solve the resulting equation
for €, to obtain

Syw

- (1+e yml2w) (22

€=

The final velocities of the granules at the end of the col-
lision to first order iné are

locity v (second pangl and energy rati&(®/E, (third pane) at

the end of a collision for the Hertz potential for spheres. In the first
two, the gray scale shows darker coloring for higher speeds. In the

1
v (13) — E ( 1— eyﬂ'/Zw)ef ylw

third panel, darker coloring indicates higher energy. The curves in 2

the first two panels are isovelocity lines, and in the third panel + gy (1+2e77’2“’+ew/‘°)e_37"/2“’,

isoenergy lines.

e (23a
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0.00 - - - — T, ; energy as a function of friction point to the interesting dy-
PR namical asymmetries in this problem. While most of our re-
S/ 1 sults have been calculated for a potential with 2 [cf. Eq.
® (1)], we have argued and shown numerically that the two-
005 e - granule results are qualitatively similar for other values of
s (albeit not quantitatively equal They therefore provide
-t S 1 some insights into the dynamics involving more realistic po-
A’ tentials.
010 T R _ Finally, we stress that a chain of many granules differs in
N7 important ways from the two-granule system. For example,
\ with n>2 a frictionless chain may support solitons, while
the n=2 chain does nof3]. Also, due to the interactions
, , , , , , with further granules, there may be backscattering in a chain
00 05 1o 13 20 25 30 even for parameters that do not lead to backscattering in the
two-granule system. On the other hand, since pulses are
FIG. 7. Final velocity of the first granule whem;>1v,, §  known to remain very narrow in granular chaiizs5s,6], the
=0.1 (dashedl y;=7,, 6=0 (dotted, and y;<7y,, 6=—0.1  analysis of the dynamics of two granules provides important

(s
~

(solid). insights into the behavior of longer chains and other larger
arrays[18].
1
(s)—— 720\ o= Y7l ©
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We immediately see that the backscattering is greates, if APPENDIX: SCALING

>1v1 (6>0) than if y; is the larger friction coefficient. This  The equations of motion with kinetic friction are in gen-
behavior is similar to that which occurs when we have Ki-grg| of the form
netic friction. Thus, again a force in the second granule is
more effective in producing the _backscatte_r(ag expected my;(7)= i,uig—a[yi(r)—yj(r)]”’l, (A1)
In Fig. 7, we present the velocity of the first granule at the
end of the collision as a function of for different values of  where they’s are displacements; is the time,n is the ex-
6. Once again we findfor each value ofé) an optimal  ponentin Eq(1), x; is the friction coefficientg is the gravi-
scaled dissipation constant for which the backscattering igational constant, anidj = 1,2. If particlei is frictionless, the
greatest. We note that the total energy at the end of the cofirst term on the right is absent. The initial conditions are
lision is a monotonically decreasing function of the average, (0)=0 andy;(0)=0 or v,. We define new variables,

. . . I I . |
dissipation parametey. andt via the relations

IV. SUMMARY AND OUTLOOK yi=Ax, 7=Bt, (A2)

We have presented an overview of the dynamics of twdn terms of which the equations of motion are
granules subject to repulsive but not restoring for@sin
granular materia)s and to kinetic or hydrodynamic friction. mA.
In particular, we explored parameter regimes that would give —Xi==g—aA" [x () -x(]""" (A3
rise to backscatteringnd propagation at the end of a colli- B
sion, with a view toward future studies of chains of granules.The choices
subject to friction. We explored the consequences of “fric-
tional disorder” in the two-granule system and found dra-
matically asymmetric behavior, that is, backscattering and p—|-%_ - o ~#9 (vom
propagation are affected differently by the friction on the first a Vol & mug\ @
and second granules. For example, while friction that is “too (A4)
high” on either granule will lead to situations where back-
scattering or propagation or both do not occur, the range dead to the scaled equations of motion used in the text, e.g.,
friction parameters thatlo lead to the occurrence of back- }
scatteringand propagation is considerably greater for the Xi(H) == 7 —[x(t) —x; ()" L, (A5)
second granule than for the first. While this is perhaps not _
surprising, the nonmonotonicities in the final velocity andwith the initial conditionsx;(0)=0 andx;(0)=0 or 1.

Uém 1/n Uém 1/n

vém) Ln 1
7
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With hydrodynamic friction, the equations of motion are Again we choosé\ andB as above, and set
of the form

~ 2 1/n
_, . 7 o_m) A8)
my(7)=—yyi(r)—alyi(1)—y;(n]""*  (A6) Yo a
and, in terms of the new variables, to obtain
B (0=~ (1) —aA [x, (D) x, (D] L. (A7) AR "
B2 7™ ' . ' with initial conditions as above.
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