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Dynamics of two granules
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We study the dynamics of two particles that interact only when in contact. In this sense, although not in
every particular, the interactions mimic those in granular materials. The detailed solution of the dynamics
allows an analysis of the backscattering behavior of the first particle and of the energy dissipation in the system
as a function of various parameters.
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I. INTRODUCTION

Signal propagation in granular materials is a lon
standing subject of interest@1–5#, and has recently attracte
considerable attention in a number of novel contexts. On
the observation that the attenuation characteristics of sig
~impacts! in such materials might make them good can
dates for shock absorption@6#. Another is the use of the
backscattered signal for the nondestructive identification
buried objects@5,7–10#.

Interactions in granular materials are notoriously co
plex, but a number of relatively simple models have be
implemented in the context of signal propagation, mod
that it is hoped capture the principal ingredients of the t
interactions at least in some regimes. A model potential u
for a monodisperse chain of particles that repel upon ove
according to the Hertz law is given by@11#

V~d i ,i 11!5
a

n
d i ,i 11

n , d<0,

V~d i ,i 11!50, d.0. ~1!

Here, for spheres,

d i ,i 11[2R2@~zi 111xi 11!2~zi1xi !#, ~2!

a5
2

5D~Y,s! S R

2 D 1/2

, D~Y,s!5
3

2 S ~12s2!

Y D , ~3!

Y and s denote Young’s modulus and Poisson’s ratio,
spectively,zi denotes the initial equilibrium position of grai
i in the chain, andxi is the displacement of graini from this
equilibrium position. The geometric parameterR is the ra-
dius if the particles are spheres. More generally,R is deter-
mined by the principal radii of curvature of the surface at
point of contact, and the specific expressions in Eqs.~2! and
~3! must be modified accordingly@12#. The exponentn is 5/2
for spheres, it is 2 for cylinders, and, in general, depends
geometry.

Two features of the potential are decisive for the result
propagation properties of the chain: one is the exponenn
and the other is the absence of an attractive portion in
potential. It is in this latter respect that the granular ch
differs profoundly from the many models of nonlinearly i
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teracting oscillators~such as the Fermi-Pasta-Ulam chai!
extensively studied in recent years@13,14#.

Two decades ago Nesterenko@3# showed that under ap
propriate assumptions, among them the slow spatial varia
of the displacementsxi , the equations of motion for the
granular particles could be approximated by a continu
nonlinear partial differential equation that admits a solit
solution for a propagating perturbation in the chain. Mo
recently, it was shown that strictly speaking these solutio
are solitary waves rather than solitons@15,16#. It is also un-
derstood that a potential exponentn.2 is required to accom-
modate solitary waves, i.e., a ‘‘hard nonlinearity’’ is require
@6#. Nesterenko coined the words ‘‘sonic vacuum’’ to stre
the importance of the absence of ‘‘harmonic terms’’ (n52)
in this analysis because such terms~and only such terms! are
associated with ordinary sound propagation. Indeed, an
→2 the width of the solitary wave diverges. More recent
numerical simulations ofdiscrete chains have provided a
great deal of additional information about the important ro
of discreteness as well as nonlinearity in the signal propa
tion properties.

Thus, while the continuum solitary wave solutions pr
vide enormously helpful analytic insights, the importance
discreteness in the propagation properties of such ch
should not be underestimated. Neither should the fact
even with a ‘‘harmonic’’ exponentn52, the chain is decid-
edly different from a harmonic systembecause there is no
attractive restoring force. The resulting nonanalyticity of the
potential leads to profoundly different properties than tho
observed in an ordinary harmonic chain. Indeed, althou
solitary waves are no longer exact solutions~and there is no
longer a perfect sonic vacuum!, there are extremely long
lived quasisolitary waves that broaden slowly~whereas a
harmonic chain would exhibit rapid dispersion of energ!
@14#.

We offer the above observations in support of the use
ness of a study of a chain with only repulsive forces ev
with the choicen52. A number of helpful insights can b
achieved from such a study if one is able to obtain analy
results, and this is possible withn52. In this paper, we carry
out such an analysis for the simplest~and yet extremely in-
teresting! such system, namely, one consisting of only tw
masses. Surprisingly, this simple scenario seems not to h
been analyzed in detail in the literature, although the dyna
ics of pairwise collisions is an important input~and phenom-
©2003 The American Physical Society03-1
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enological assumptions are made about it! in the study of
longer chains@5#. A two-mass system, being explicitly inte
grable, can yield valuable information. In view of some
the current applications of energy propagation in granu
materials, we are particularly interested inbackscattering
andenergy dissipationin the presence of friction, and in th
effects of frictional disorder on these quantities. The res
of our analysis promise to provide helpful phenomenologi
input into the propagation of excitation pulses in long
chains as long as the pulses remain narrow. For exam
recent experiments on impulse dispersion in tapered ch
indicate the significant role of friction in the propagation a
dispersion process@17#. We find that a two-mass system
leads to some unanticipated nonmonotonic~albeit, in hind-
sight understandable! behaviors as one varies system para
eters. To support the relevance of our results to the sphe
granular problem, we also present some numerical result
the Hertz potential withn55/2, and show the similarity in
the behavior of this system and that of then52 case.

We consider two finite-sized particles~‘‘granules’’! of
equal massm. The specific value of the mass does not ma
since it can be scaled out by redefining variables; the o
important point is that the masses are equal. When the g
ules ‘‘do not touch,’’ each moves independently of the oth
~i.e., their potential of interaction is zero beyond a cert
distance between their centers!. When theydo ‘‘push one
into the other,’’ there is a repulsive linear force between th
centers with force constantk; the force vanishes once th
particles separate again. One or both of the granules are
ject to friction, which may be kinetic~i.e., constant, see Sec
II ! or hydrodynamic~i.e., proportional to velocity, see Se
III !. In order to initiate energy transfer between the granu
one can, for example, introduce some precompression in
system, or one can impart one of the granules an initial
locity toward the other. We do the latter: initially the granul
are assumed to be just touching, the first granule has in
velocity v0 toward the second, and the second is at rest.
are interested in the velocity of the two granules and the t
energy in the systemimmediately after the collision. Note
that in the absence of friction, the collision is elastic so t
the energy and momentum are conserved. In this case
first granule simply ends up at rest and the second with
locity v0, i.e., there is no backscattering. Of course, there
backscattering, even in the absence of friction, in a lon
chain.

Even these simple systems present a broad range of
comes, some more interesting than others, and not a
which will be covered in detail. For example, one or t
other or both granules may stop moving altogether before
collision is over. However, we are particularly interested
situations where the second granule is still moving forw
after the collision~propagation! and the first granule is mov
ing backward~backscattering!. Our analysis will focus on
these outcomes and the conditions that lead to them.

In Sec. II, we present and solve the two-particle mo
with kinetic friction. Section III presents a similar calculatio
for the model with hydrodynamic friction. A summary o
results, and a brief outlook of future work, are gathered
Sec. IV.
02130
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II. TWO PARTICLES WITH KINETIC FRICTION

In this section, we examine granule collision when one
both of the granules are subject to kinetic friction with fri
tion coefficientm. Kinetic friction arises from contact force
when a solid body moves along a solid surface, and depe
on the velocity only in that its direction is always opposed
the velocity. Two cases are presented analytically~at least in
part!. They turn out to exhibit rather different behavior
which we anticipate here as a point of reference. In one, o
the second granule is subject to friction. We find that fo
certain range of friction coefficient values, there is bo
propagation and backscattering, that the velocities of the
ward moving second granule and the backward moving fi
granule are monotonic functions of the friction, but that t
total energy dissipation during the collision is nonmonoton
In the second model, only the first granule is subject to fr
tion. Here we again find a range of values of the fricti
coefficient for which there is both propagation and bac
scattering. Now, however, the granule velocities are n
monotonic functions of the friction while the energy loss is
monotonic function. Results for the more general case
both granules subject to~possibly different! friction are pre-
sented numerically. In this way, we cover the entire range
‘‘frictional disorder,’’ as might occur if the granules are mad
of different materials. While most of our discussion revolv
around the casen52, some results forn55/2 are presented
Also, as a backdrop we keep in mind the most extreme c
of a hard interaction, a hard sphere (n→`). The interaction
is instantaneous in this case and leads to elastic collision
which energy and momentum are conserved. The first g
ule stops and the second granule moves forward. This c
ment emphasizes the observation that only collisions of fin
duration can lead to a combination of backscattering a
propagation in two granules.

We rescale variables~see the Appendix! so that we can se
the coefficienta[1 in Eq. ~1! regardless of the value ofn.
This rescaling allows presentation of results in terms o
single parameter, the scaled friction.

A. Frictionless first granule

Consider first the case of a frictionless first granule. T
movement of the second granule will then only start if t
elastic compression exceeds the frictional force,x1

n21.h,
and so at first only the first granule moves and its motion
governed by the equation of motion

ẍ1~ t !52@x1~ t !#n21. ~4!

The initial condition for this problem isx1(0)50 and
ẋ1(0)51. The solution forn52 is easily found to be

x1~ t !5sin~ t !, ~5!

and is valid until the timet0 at whichx1(t0)5h, that is, until
t05arcsin(h).

At time t0 the second granule starts moving as well, a
the system is now governed by the two coupled equation
motion
3-2
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DYNAMICS OF TWO GRANULES PHYSICAL REVIEW E68, 021303 ~2003!
ẍ1~ t8!52@x1~ t8!2x2~ t8!#, ~6a!

ẍ2~ t8!52h2@x2~ t8!2x1~ t8!#, ~6b!

with the initial conditions: x1(t850)5h, ẋ1(t850)
5A12h2, andx2(t850)5 ẋ2(t850)50. Here we have de
fined t85t2t0. The solution is found to be

x1~ t8!5
1

4
@2h~231t82!12~12h2!1/2t81h cos~A2t8!

1A2~12h2!1/2sin~A2t8!#, ~7a!

x2~ t8!52
1

4
@h~211t82!22~12h2!1/2t81h cos~A2t8!

1A2~12h2!1/2sin~A2t8!#. ~7b!

If h is too large, the second granule will stop before t
two granules lose contact. For sufficiently smallh, this does
not happen and the above solutions then remain valid u
contact is lost. The timet85t1 when this occurs is the time
at which Dx(t1)5x1(t1)2x2(t1) vanishes, that is, whent1

5p/A2. The velocities of the granules at the moment
separationt5t01t1 are

v1
(s)52

hp

2A2
, ~8a!

v2
(s)5S ~12h2!1/22

hp

2A2
D . ~8b!

The values ofh for which this description is valid are thos
for which v2

(s).0, that is, for 0,h,(11p2/8)21/2

50.669 . . . . Beyond timet5t01t1 each granule continue
on its course, the first forever and the second until frict
brings it to rest. Backscattering and propagation thus oc
when h,0.669 . . . . As afunction of h in this range, the
magnitude of the backward velocity increases monotonic
while that of the forward velocity decreases monotonica
The backscattering is shown in Fig. 1, which we exhibit
order to stress the similarity in the behavior of then52
potential and that of the Hertz potential for spheres. Asn
increases the range ofh for which both v1

(s) and v2
(s) are

nonzero shrinks, until it shrinks away completely whenn
→`.

Perhaps the most dramatic outcome of this calculatio
the fact thatthe friction on the second granule causes t
first granule to move backward~recall that if both granules
are frictionless the first one simply stops!. In other words, the
friction on the second granule is responsible for backsca
ing. This behavior, strange at first glance, occurs because
first granule ‘‘stops too soon,’’ that is, it stops before the p
has had time to decompress completely. Indeed, if the f
tion on the second granule is so strong that it does not m
at all, the first will move backward with velocityv1521.
Our model lies between the limiting cases of zero and v
largeh (21<v1

(s)<0).
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In Fig. 2, we show the ratio of the total kinetic energy
the system at the end of the collision to the initial energy

E(s)

E0
512

h~12h2!1/2p

A2
1S p2

4
21Dh2. ~9!

In the rescaled variables,E051/2. Curiously, there is a re
gion where this ratioincreaseswith increasing friction coef-
ficient. The reason for this behavior is that when frictio
increases beyond a certain point~beyond the minimum in the
curve!, relatively more energy is transferred to the first gra
ule ~as opposed to being simply dissipated! by the end of the
collision. Again we also show the numerical results obtain
for the Hertz potential withn55/2 ~solid curve! and com-
ment on the similarity with then52 curve.

B. Frictionless second granule

Next we consider the case of a frictionless second gr
ule. The first granule now moves forward, eventually sto
and perhaps moves backward, while the second granu
moves forward.

FIG. 1. Velocity of the first~frictionless! granule at the end of
the collision as a function of friction. Solid curve:n52.5 ~Hertz
potential for spheres!. Dashed curve:n52.

FIG. 2. Ratio of the total energy at the moment of separation
the initial energy as a function of friction. Solid curve:n52.5
~Hertz potential for spheres!. Dashed curve:n52.
3-3
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ROSAS, BUCETA, AND LINDENBERG PHYSICAL REVIEW E68, 021303 ~2003!
As before, the granules are initially just touching, the fi
granule having an initial velocityv0[1. While the first gran-
ule is moving forward, the system is governed by the follo
ing equations:

ẍ1~ t !52h2@x1~ t !2x2~ t !#, ~10a!

ẍ2~ t !52@x2~ t !2x1~ t !#. ~10b!

Explicit integration yields

x1~ t !5
1

4
@2h12t2ht21h cos~A2t !1A2 sin~A2t !#,

~11a!

x2~ t !5
1

4
@h12t2ht22h cos~A2t !2A2 sin~A2t !#.

~11b!

These equations hold as long as velocityv1(t)5 ẋ1(t).0.
This velocity is given by

v1~ t !5
1

4
@222ht12 cos~A2t !2A2h sin~A2t !#.

~12!

The timet0 at whichv1(t0)50 cannot be found explicitly in
general, but the problem may still be treated analytically
small or for largeh, or numerically for an arbitraryh.

If h!1, we can expandv1(t) aroundt5p/A2 ~the solu-
tion for h50). We find that

t05
p

A2
2S ph

A2
D 1/2

1O~h3/2!. ~13!

In Fig. 3, we compare this analytical approximation with t
numerical solution. The small-h approximation is clearly

FIG. 3. Comparison of the small-h analytical solution~dotted!
and the numerical solution~solid! of the stopping condition
v1(t0)50. The dashed line is the time it would take the granules
separate if solutions~11a! and~11b! remained valid until then. The
fact that it lies above the other curves indicates that the first gra
stops before the collision is over.
02130
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very good for a rather large range ofh. Therefore, we pro-
ceed using this approximation. In the figure we also show
time that it would take the collision to be over if solution
~11a! and ~11b! would remain valid, i.e., the solutiont08 of
the equationx1(t08)5x2(t08). This time, shown as a dashe
line, is always above the time at which the first granule sto
indicating that the first granulenecessarilystops before the
collision is over. This persists even for largeh: ash→` the
stopping time of the first granule goes to zero as 1/h, while
the time for the collision to be over if the above solutio
would remain valid goes to zero as 2/h.

When the first granule stops, the equations of motion
no longer Eqs.~10a! and~10b!. The initial conditions for the
new set of equations are the velocities and positions fo
above at timet5t0. Within the small-h approximation, we
use

x1~ t0!5
1

8
@2A2p2~p214!h#, ~14a!

x2~ t0!5
1

8
@2A2p24~23/4!Aph2~p224!h#, ~14b!

v1~ t0!50, ~14c!

v2~ t0!5
1

2
@22A2ph#, ~14d!

as the initial conditions.
The equations of motion at this point depend on whet

the first granule simply remains stationary or starts mov
backward. The latter occurs if the elastic force is greater t
the friction, that is, if

@x1~ t0!2x2~ t0!#5
1

2
@2h2h cos~21/4Ahp!

1A2 sin~21/4Ahp!#.h. ~15!

Therefore, for h smaller than a critical value (h
50.439 . . . ), thefirst granule will start moving backward
and we confine our analysis to this case. The equation
motion then are~note that since the first granule is movin
backward, the friction is also reversed!

ẍ1~ t8!5h2@x1~ t8!2x2~ t8!#, ~16a!

ẍ2~ t8!52@x2~ t8!2x1~ t8!#, ~16b!

where t85t2t0. The initial conditions are those given i
Eqs.~14a!–~14d!.

The solutions of this set as a series inh can easily be
exhibited explicitly but are not very instructive. Two cas
must be distinguished:~1! The first granule is still moving
backward when the collision ends; and~2! The first granule
stops before the collision ends, at which point the equation
motion ~16a! no longer holds. In either case, from the ser
solutions, one can calculate the timet85t1 at which the col-

o
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DYNAMICS OF TWO GRANULES PHYSICAL REVIEW E68, 021303 ~2003!
lision ends as the solution of the equationx1(t8)5x2(t8). If
we assume that the first granule is still moving, we find

t15S ph

A2
D 1/2

2h1O~h3/2!. ~17!

This solution is shown as the dotted curve in Fig. 4, as is
numerically obtained exact solution~solid line!. Approxima-
tion ~17! begins to seriously deviate from the exact soluti
at aroundh;0.1. The dashed curve indicates the time
which the first granule stops before the end of the collisio
Eq. ~16a! remains valid until it does. This analysis is ther
fore appropriate and leads to backscattering~and propaga-
tion! if h&0.22.

In Fig. 5, we see that ash increases, the final backwar
velocity of the first granule is nonmonotonic, that is, it i
creases from zero to'3% of the initial velocity, and then
decreases again. In this model, we thus observe that the
backscattering for smallh. For h50 and forh greater than

FIG. 4. Comparison of the time required for the two granules
separate calculated numerically~solid! and analytically for smallh
~dotted!. The time required for the first granule to stop according
the equations of motion~16a! and~16b! is shown as a dashed curv
Therefore, ifh&0.22, the first granule is still moving backwards
the end of the collision.

FIG. 5. Final velocity of the first granule.
02130
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a certain value (*0.22), the first granule is at rest when th
collision ends and there is no backscattering. Therefore,
backscattering in this model happens because thefirst gran-
ule ~as opposed to the second granule in the previous
ample! stops ‘‘too soon’’~i.e., before the collision is over!,
but not ‘‘too late’’ ~i.e., when the compression is still stron
enough to overcome friction!. The required balance leads t
the nonmonotonic behavior seen in Fig. 5. Even though
backscattering is small~e.g., compared to that in the firs
model!, it is conceptually striking. However, the total energ
of the system at the end of the collision is a monotonica
decreasing function ofh, in contrast to the behavior in th
previous case shown in Fig. 2.

C. Granules with arbitrary friction

While the results presented above deal with the extrem
of frictional disorder, it is helpful to present a broad brush
graphical results for arbitrary combinations ofh1 andh2, the
friction parameters for the two granules. This is also an
portunity for reassertion that these broad brush results
essentially the same for then52 and then55/2 Hertz po-
tentials for two granules. Since the graphical results are n
essarily numerical, we present them for then55/2 potential.
They are qualitatively indistinguishable from those forn
52.

In Fig. 6, we show in gray scale the magnitudes ofv1
(s)

~first panel!, v2
(s) ~second panel! and energy ratioE(s)/E0 at

the end of the collision in the (h1 ,h2) regime where there is
simultaneous backscattering and propagation. Darker s
ing represents a higher speed~first and second panels! and a
higher energy~third panel!. Figure 1 is associated with a
upward trajectory in the first panel ath150. The monotoni-
cally increasing backscattering seen in Fig. 1 correspond
the upward darkening. Figure 2 is associated with the sa
upward trajectory, now in the rightmost panel. The no
monotonicity is seen in the lightening followed by darke
ing. The nonmonotonicity of Fig. 5 is associated with t
shading in the first panel associated with the horizontal
jectory alongh250, captured in the curvature of the isov
locity lines. The monotonicty ofv2

(s) discussed in the (h1,0)
and (0,h2) cases is evident in the middle panel.

This rather complex behavior arises from the interplay
energy dissipation and energy transfer during a collisi
Thus, for example, increasing friction on the first granu
causes it to stop sooner. If it stops too soon~‘‘high h1’’ !, the
spring is not sufficiently compressed to overcome fricti
and it may happen that the whole process simply stops t
and either one or the other or both granules do not move.
the other hand, if it stops too late~‘‘low h1’’ !, then the en-
ergy transfer to the second granule may cause it to m
forward, but there may not be sufficient energy to cau
backscattering. Or backscattering may occur but not forw
motion. Between these situations~‘‘intermediateh1’’ !, both
granules may be in motion at the end of the collision.

III. TWO PARTICLES WITH HYDRODYNAMIC FRICTION

When dissipation is of hydrodynamic origin, the dissip
tive force 2g ẋ is proportional to the particle velocity. Hy

o
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ROSAS, BUCETA, AND LINDENBERG PHYSICAL REVIEW E68, 021303 ~2003!
FIG. 6. Backscattering velocity2v1
(s) ~first panel!, forward ve-

locity v2
(s) ~second panel!, and energy ratioE(s)/E0 ~third panel! at

the end of a collision for the Hertz potential for spheres. In the fi
two, the gray scale shows darker coloring for higher speeds. In
third panel, darker coloring indicates higher energy. The curve
the first two panels are isovelocity lines, and in the third pa
isoenergy lines.
02130
drodynamic friction arises from the motion of a body again
a lubricated surface or in a liquid or gaseous medium.
find that the cases of equal and slightly unequal friction
efficients can be solved analytically and cover essentially
whole spectrum of possible behaviors.

The scaled equations of motion~see the Appendix! for the
potential withn52 are

ẍ1~ t !52g1ẋ12@x1~ t !2x2~ t !#, ~18a!

ẍ2~ t !52g2ẋ22@x2~ t !2x1~ t !#. ~18b!

Even though these equations can be integrated exactly
time required for the two granules to separate can, in gene
only be calculated numerically. Here we consider the c
g1'g2, for which we can find an approximate analytic e
pression for this time. Thus, we setg i5g(11d i) with d1
52d2[d and solve the problem for smalludu.

Defining x65x16x2, we can obtain from Eqs.~18! the
associated Laplace transformsX6(s):

dgsX2~s!1~gs1s2!X1~s!51, ~19a!

~21gs1s2!X2~s!1dgsX1~s!51. ~19b!

The solution of these equations to first order ind is

X1~s!5
1

s~g1s!
2

dg

s~g1s!@21s~g1s!#
, ~20a!

X2~s!5
1

21s~g1s!
2

dg

~g1s!@21s~g1s!#
. ~20b!

The time functionsx6(t) are the inverse Laplace transform
of X6(s). Furthermore, the timet0 at which the granules
separate can be calculated by solving the equationx2(t
5t0)50. To zeroth order ind ~that is, ford50), we have

x2~ t0!5e2gt0/2
sin~vt !

v
50, ~21!

wherev5A82g2/2. If g2>8, the collision never ends. I
g2,8, then it ends at timet05p/v. To calculate the sepa
ration time to first order ind, we write t15t01e/v, expand
x2(t1)50 to first order ine, and solve the resulting equatio
for e, to obtain

e52
dgv

2
~11e2gp/2v!. ~22!

The final velocities of the granules at the end of the c
lision to first order ind are

v1
(s)5

1

2
~12egp/2v!e2gp/v

1
dg2

4
~112egp/2v1egp/v!e23gp/2v, ~23a!

t
e
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v2
(s)5

1

2
~11egp/2v!e2gp/v

1
dg2

32v2
@8v21~12v22g218!egp/2v

1~4v22g218!egp/v#e23gp/2v. ~23b!

We immediately see that the backscattering is greater ifg2
.g1 (d.0) than ifg1 is the larger friction coefficient. This
behavior is similar to that which occurs when we have
netic friction. Thus, again a force in the second granule
more effective in producing the backscattering~as expected!.
In Fig. 7, we present the velocity of the first granule at t
end of the collision as a function ofg for different values of
d. Once again we find~for each value ofd) an optimal
scaled dissipation constant for which the backscatterin
greatest. We note that the total energy at the end of the
lision is a monotonically decreasing function of the avera
dissipation parameterg.

IV. SUMMARY AND OUTLOOK

We have presented an overview of the dynamics of t
granules subject to repulsive but not restoring forces~as in
granular materials!, and to kinetic or hydrodynamic friction
In particular, we explored parameter regimes that would g
rise to backscatteringand propagation at the end of a coll
sion, with a view toward future studies of chains of granu
subject to friction. We explored the consequences of ‘‘fr
tional disorder’’ in the two-granule system and found d
matically asymmetric behavior, that is, backscattering a
propagation are affected differently by the friction on the fi
and second granules. For example, while friction that is ‘‘t
high’’ on either granule will lead to situations where bac
scattering or propagation or both do not occur, the range
friction parameters thatdo lead to the occurrence of back
scatteringand propagation is considerably greater for t
second granule than for the first. While this is perhaps
surprising, the nonmonotonicities in the final velocity a

FIG. 7. Final velocity of the first granule wheng1.g2 , d
50.1 ~dashed!, g15g2 , d50 ~dotted!, and g1,g2 , d520.1
~solid!.
02130
-
s

is
l-

e

o

e

s
-
-
d
t
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t

energy as a function of friction point to the interesting d
namical asymmetries in this problem. While most of our
sults have been calculated for a potential withn52 @cf. Eq.
~1!#, we have argued and shown numerically that the tw
granule results are qualitatively similar for other values on
~albeit not quantitatively equal!. They therefore provide
some insights into the dynamics involving more realistic p
tentials.

Finally, we stress that a chain of many granules differs
important ways from the two-granule system. For examp
with n.2 a frictionless chain may support solitons, whi
the n52 chain does not@3#. Also, due to the interactions
with further granules, there may be backscattering in a ch
even for parameters that do not lead to backscattering in
two-granule system. On the other hand, since pulses
known to remain very narrow in granular chains@2,5,6#, the
analysis of the dynamics of two granules provides import
insights into the behavior of longer chains and other lar
arrays@18#.
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APPENDIX: SCALING

The equations of motion with kinetic friction are in gen
eral of the form

mÿi~t!56m ig2a@yi~t!2yj~t!#n21, ~A1!

where they’s are displacements,t is the time,n is the ex-
ponent in Eq.~1!, m i is the friction coefficient,g is the gravi-
tational constant, andi , j 51,2. If particlei is frictionless, the
first term on the right is absent. The initial conditions a
yi(0)50 and ẏi(0)50 or v0. We define new variablesxi
and t via the relations

yi5Axi , t5Bt, ~A2!

in terms of which the equations of motion are

mA

B2
ẍi~ t !56h i2aAn21@xi~ t !2xj~ t !#n21. ~A3!

The choices

A5S v0
2m

a D 1/n

, B5
1

v0
S v0

2m

a D 1/n

, h[
mg

mv0
2 S v0

2m

a D 1/n

~A4!

lead to the scaled equations of motion used in the text, e

ẍi~ t !56h i2@xi~ t !2xj~ t !#n21, ~A5!

with the initial conditionsxi(0)50 andẋi(0)50 or 1.
3-7
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With hydrodynamic friction, the equations of motion a
of the form

mÿi~t!52g̃ i ẏi~t!2a@yi~t!2yj~t!#n21 ~A6!

and, in terms of the new variables,

A

B2
ẍi~ t !52g̃ i

A

B
ẋi~ t !2aAn21@xi~ t !2xj~ t !#n21. ~A7!
-
-

.
s:
m
f.

02130
Again we chooseA andB as above, and set

g i5
g̃ i

mv0
S v0

2m

a D 1/n

~A8!

to obtain

ẍi~ t !52g i ẋi2@xi~ t !2xj~ t !#n21 ~A9!

with initial conditions as above.
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